
Section 9: Intro to Lab 5
CSE 451 18WI

Debugging Tip: GDB Watchpoints

● Many Lab 4 bugs happen due to unintentional inconsistencies in memory
○ Corrupt code/stack page, corrupt virtual/physical metadata page, etc.
○ Finding what became corrupted is relatively trivial

● Watchpoints are super useful for debugging memory corruption!
○ Breaks in GDB whenever data at an address being watched changes!

● Usage Steps
○ Identify address of some data that became corrupted

■ e.g. A vpage_info/core_map_entry field that should’ve or shouldn’t have changed
○ Without recompiling, in GDB: watch *(data_type *) 0xaddress

https://sourceware.org/gdb/onlinedocs/gdb/Set-Watchpoints.html

GDB Watchpoint Example

● Let’s say that for a particular struct vpi_page *info, you learn its next field
was set to NULL when it shouldn’t have been.

● In GDB
○ p/x &info->next

■ Let’s say it’s 0xdeadbeef
○ (without any code changes, run make qemu-gdb and make gdb again)
○ watch *(struct vpi_page **) 0xdeadbeef

Lab 5

Two Parts

● A - Enable file creation, file writes and file appends

● B - Make the file system crash safe

Part A:
Create, Write &
Append

XK Disk Format

● Boot Block
○ Used by the boot loader

● Super Block
○ Describes how the disk is formatted

● Swap
○ Used for paging

● Bitmap
○ Keeps track of which blocks are free/used

● Inodes
○ Inode table holds an inode for each file (inode holds file metadata)

● Extents
○ Where file data is stored

See lab5.md for the disk diagram with block offsets included

struct dinode - inc/fs.h

struct extent - inc/extent.h

struct dinode - inc/fs.h

Why is there padding?

struct dinode - inc/fs.h

2+
2+
4+
8+
46
62

Size should be a power of
2 to ensure no dinode is

split across a page

Sizeof evaluates to 64 bytes, due to padding (2 bytes at end)

struct inode - inc/file.h

If you modify struct dinode,
make sure to update struct

inode as well!

Write

● Modify writei in kernel/fs.c so an inode can be used
to write to disk

● Use bread, bwrite, brelse
● See readi for an example
● Also, change open to allow O_RDWR

Append

● Need to be able to extend the size of a file
● Allocate additional space using extra block pointers or extra extent

pointers

Example: Need to be able to handle the case where the user tries to append to
File 1 when the disk’s extent region is laid out as follows.

Free Space .File 1’s Data File 2’s Data File 3’s Data

Create

● Create a new file when O_CREATE is passed to open

“You need to create a empty inode on disk, change the root directory to add a
link to the new file, and (depending on your disk layout) change bitmap on

disk. The inode file length itself will change, so don't forget to update this as
well.”

Note: File deletion is not required

Part B:
Crash-Safe File
System

Let’s append to a file...

Simple example: Say we have a file “cat.txt”. It has a single extent that’s 1 block
long. This block is half full, meaning the file size is 256 bytes. We want to
append 50 bytes to the end of the file.

Need to write multiple blocks to disk:

● The block containing the inode, since we need to update the file size
● The block itself that we’re adding the 50 bytes to

Simple Example Continued

We first update the size of the file, changing 256 to 306 in
the inode block. We write this change to disk. Next we get
ready to write the 50 bytes to the extent block...

Simple Example Continued

CRA
SH

Image: https://www.petbucket.com/blog/63640/how-to-keep-your-cat-from-chewing-cables.html

XK reboots...

Oh look cat.txt is now 306 bytes long!
Let’s go read it!

Because we never wrote the 50 bytes
to disk, that last 50 bytes we read will
not be what we were expecting...

Image: https://brightside.me/wonder-animals/the-life-of-a-proud-cat-owner-expectations-vs-reality-111755/

How to make XK filesystem crash safe?

There are several different ways to do this. We recommend you implement
journaling.

Let’s walk through the previous example, this time using journaling...

Simple Example with Journaling

We have our two updated blocks.
Instead of writing each block to
their respective areas on disk, we
write both to the log

Updated
Inode
Block

Updated
Extent
Block

Updated
Inode
Block

On disk log

CRA
SH

Image: https://www.petbucket.com/blog/63640/how-to-keep-your-cat-from-chewing-cables.html

Simple Example With Journaling Continued

XK reboots...

Oh look cat.txt is still 256 bytes long.
When we read is it is as expected.

Because we only wrote to the log and
not to disk, the data on disk is still
valid.

Image: https://brightside.me/wonder-animals/the-life-of-a-proud-cat-owner-expectations-vs-reality-111755/

Let’s see
journaling
succeed...

Simple Example with Journaling

We have our two updated blocks.
Instead of writing each block to
their respective areas on disk, we
write both to the log.

Updated
Inode
Block

Updated
Extent
Block

Updated
Inode
Block

On disk log

Updated
Extent
Block

Simple Example with Journaling

Once all modified blocks have been
written to the log, we need to write
something that indicates all parts
have been written to the log (a
commit message).

If on reboot we don’t see this log
commit message, we shouldn’t try
to apply the changes in the log.

Updated
Inode
Block

On disk log

Updated
Extent
Block

Commit
Block

Simple Example with Journaling

Now that all parts have been
written to the log, we apply them to
the proper section of disk one
block at a time.

If XK crashes during this process,
all necessary blocks are stored in
the log so we can simply re-apply
them on boot. (Applying log
actions should be idempotent.)

Updated
Inode
Block

On disk log

Updated
Extent
Block

Commit
Block

Where to place the log?

Place the log in the metadata area before the inodes. This will allow you to use
the bread/bwrite interface to interact with the log.

Boot
Block

Super
Block Bitmap Inodes Extent UnusedSwap Log

